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Summary

Introduction

Finite Element Analysis

Although bodies in a Working Model simulation are considered rigid, Working
Model can analyze the motion of flexible bodies. This paper describes the
steps necessary to perform accurate dynamic simulations of systems that include
flexible bodies.

Realistically, no body 1s perfectly rigid. When a load 1s applied to a body, that
body deforms. However, Working Model models bodies as perfectly rigid for

two reasons:

1. Most real-world objects are stiff enough such that the results of
rigid-body dynamics are very accurate.

2. Flexible-body dynamics is very computationally intensive.

Since the dynamics of slightly flexible bodies are often dominated by the rigid-
body motion, one does not lose much accuracy by neglecting the small
deformations.

However, the rigid-body assumption is less accurate with objects that are more
flexible. To accurately simulate flexible-body motion, analysts often use finite-
element analysis programs.

Engineers sometime have the misconception that finite-element programs are
the perfect way to simulate the motion of a flexible body. Finite element
programs, as powerful as they are, have drawbacks.

Most finite element programs are linear codes that assume small displacements.
These programs cannot simulate the motion of flexible bodies which are moving
(1.e., undergoing translation or rotation). The term "linear”" means the motion 1s
governed by linear differential equations. This 1s not to be confused with linear
stress-strain relationship, as most linear codes can handle nonlinear stress-strain
relationships.

Page 1



Figure 1
Two systeme with
flexible elements

Flexible Bodies
which can be analyzed
by Working Model

Figure 2
Truck with
Flexible Bed

<_

Figure 1a Figure 1b

Linear Motion Rotational Motion

For example, note the systems pictured in Figure 1. Both systems have a
flexible beam attached to a rigid body. The system in Figure la undergoes
linear motion (governed by linear differential equations) and can be modeled by
most finite element packages. However, the system in Figure 1b undergoes
rotational motion (which 1s govemed by nonlinear differential equations) and
cannot be modeled by most finite element packages.

There are a few fimte element packages (called nonlinear codes) that can
simulate the motion of the system in Figure 1b. However these codes are more
costly and slower than the conventional linear finite element programs.

Furthermore, finite element codes have the limitation than every body in the
simulation must be analyzed as a flexible body. Large simulation times result
from systems with a mixture of rigid and flexible bodies. Rigid bodies possess
very high flexible body frequencies, slowing down the program's numerical
integration.

In general, Working Model cannot model flexible bodies. However, Working
Model can accurately simulate the motion of flexible beams. Thus, if an object
can be modeled ag a beam, its motion can be accurately simulated by Working
Model. For example, since the flexible bed of the truck pictured in Figure 2
can be modeled ag a beam, its motion can be accurately simulated by Working
Model.
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Figure 3

Discrete Sectioned
Flexible Beam
Connected to

a Rigid Body

In Working Model, beams are modeled by breaking them down into discrete
sections (of equal size) which are cormected by rotational springs. Although
each section is still a rigid body, the rotational springs allow the beam to flex as
the actual flexible body does. Figure 3 shows such a beam that has been broken

nto discrete sections.
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Assigning Spring Constants

Elastic Modulus
Examples

When a flexible body is discrete sectioned (as in Figure 3), rotational springs
are introduced to connect the segments. The spring constants of these springs
must be chosen carefully in order for the simulation to produce results that
accurately match the "real world" results.

For springs located at cantilevered interface, the spring constant is:

_E1
L
For springs located between segments, the spring constant is:
_ET, 6N
L 3*N-1
Where:
E = Elastic Modulus of the Flexible Material
I = Area Moment of Inertia about the Bending Axis
N = Number of Discrete Sectioned Elements
L = Length of each Discrete Sectioned Element (Total Length = L*N)

The Elastic Modulus describes the flexibility of the material. A material with a
large Elastic Modulus 1s stiff, while a material with a small Elastic Modulus is
flexible. The Elastic Modulus of some common materials are:

Wood 1-2 million Ibffin2
Concrete 3 million Ibf/in2
Marble 8 million Ibffin2
Aluminum 10 million Tbf/in2
Brass 15 million Ibf/in?
Cast Tron 10-20 million Ibf/in2
Steel 30 million 1bf/in2
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Area Moment of Inertia

Figure 4
Typical Beam and
Coordinate System

Example:
Cantilever/Free

Example:
Cantilever/Cantilever

Note that I is the central area moment of inertia of the beam's cross-section.
The area moment of inertia (which is widely used in classical beam theory)
should not be confused with the mass moment of inertia (which is commonly
used in rigid-body dynamics).

Although Figure 4 shows displays a typical I-beam, Working Model can

analyze the motion of beams with any uniform cross-section. The area moment
of inertia 1s calculated by integrating the following formula over the beam's

cross-section:
I d2 dA

Where d 1s the distance from the dA point to a line that 1s parallel to the vector x
and passes through the centroid of the cross-section.

The system pictured in Figure 3 consists of a flexible beam rigidly attached
(cantilevered) to a rigid body. The flexible beam is dizcretized into 4 elements.
The leftmost spring is assigned a spring constant:
B,
L1
while the other three springs are assigned spring constants:
E*
L

The system pictured in Figure 5 consists of a flexible beam rigidly attached
(cantilevered) to two rigid bodies. The flexible beam 1s discretized into 4
elements.
The leftmost spring and rightmost springs are assigned spring constants:
BE*T 24
-
L 11
while the other three springs are assigned spring constants:
_E7
T L
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Figure 5

Discrete Sactioned
Flexible Beam
Connected to

Two Rigid Bodies
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Choosing the Number of Discrete Sectioned Elements

The above section outlines how to choose spring constants when a flexible
beam 1s discrete sectioned into N equally sized sections. This section describes
how to choose N.

Ag the number of sections ig increased, the accuracy improves. Since execution
time greatly slows with more elements, the user should not choose more
elements than necessary to meet the desired error criteria. Figures 6 and 7 show
the error in the first three natural frequencies as a function of the number of
elements.

For a relatively rigid beam, the motion of the beam will be dominated by the first
mode. Thus, the user could choose the number of elements by inspection of the
"First Frequency” curve inFigure 6 or 7. However, for more flexible beams, the
contribution of the second and third modes become significant. In those cases,
the user must choose the number of elements by inspection of the other curves in
Figure 6 or 7.

There is no hard-and-fast rule for how many elements are needed. The graphs in
Figures 6 and 7 give a good starting peint, but the only way to verify that your
discretization 1s accurate 1s to re-run the simulation with more elements. If the
results of the two simulations agree, you have good results.
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Figure 6 Cantilever/Free Beam: Error in First 3 Natural Frequencies
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Figure 7 Cantilever/Cantilever Beam: Error in First 3 Natural Frequencies
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Importance of The motion of flexible bodies involves frequencies that are much higher than
Integration Time Step those encountered in rigid-body motion. Since these high frequencies are hard

to numerically integrate, the integrator time step must be decreased. The size of
the integrator time step depends on how many modes you expect to simulate
accurately. The integration time step 1s set by following procedure:
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1. From Figures 6 and 7, determine how many modes you expect to accurately
simulate. Use the number of modes to determine the constant C from the

table below:
Number of Modes Constant K
1 0.357
2 0.130
3 0.066
4 0.040
5 0.027

2. Calculate the maximum step size h by the formula:

_ a2 A }ﬁA
h = CH*L<*N<« * el
Where:

C is from step #1

L =Length of each Discrete Sectioned Element

N =Number of Discrete Sectioned Elements

p = Density of Material (mass per unit volume)

A = Cross-sectional Area of Beam

E =Elastic Modulus of the Flexible Material

I = Area Moment of Inertia about the Bending Axis

Choose Accuracy from the World menu

Click on Custom

Click on Runge Kutta 4 Integrator

Click on variable time step

Enter h (calculated in step #2) in the Animation Step box.

These steps result in slow execution, but they are necessary to ensure that the
flexible-body motion 1s accurately simulated.

N W W

Derivation Overview
Most of this research was performed by Paul Mitiguy in conjunction with
projects at NASA Ames Research Center.

The spring constant values described in the "Discretization Rules" section, were
derived by comparing the static results of the discretized beam with Euler beam
theory. The values for the gpring constants were backed out by matching the
deflections of the joints of the discretized beam with those predicted by Euler
beam theory. The equations for Euler beam theory are found in many reference
books including Formulas for Stress and Strain by Roark and Young and
Mechanical Engineering Design by Shigley and Mitchell.

In order to produce the graphs in Figures 6 and 7, the full, nonlinear equations
of motion for the discretized beam were formed. Then the equations were
linearized and the frequencies were extracted by eigen analysis. These
frequencies were compared to the actual frequencies found in many reference
books including Formulas for Stress and Strain by Roark and Young, pages
576-579.
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The equation for the step size h (in step #2 of the previous section) was found
by examining the first three natural frequencies of a uniform beam with both
ends fixed (pp. 576 of Formulas for Stress and Strain by Roark and Young).
These frequencies were then used to determine the maximum Runge Kutta steps
size necessary for stable integration (pp. 41 of Numerical Initial Value
Problems in Ordinary Differential Equations by C. William Gear).

This section is not meant as a full description of how these discretization rules
were derived. For more information, contact Knowledge Revolution.

Appendix: An Introduction to Modal Analysis

Example:
Motion of a
Pinned-Pinned Beam

Figure A1
First Mode Shape

pa(x)

The dynamics of a flexible body is often analyzed by a method called Modal
Analysis. Let y(x,t) represent the deflection of a point at time t at a distance x
along a beam. The solution to y(x,t) is governed by PDEs (partial differential
equations). Since PDEs are hard to solve, it 1s often advantageous to separate
the problem such that it is governed by sets of ODEs (ordinary differential
equations). The separation can often be achieved by assuming y(t) is an
infinite summation:

Yt = prG0Fq (0 + pa(0¥da() + pa(x)Fas(t) + ...
Where the pp(x) terms are called Mode Shapes and the qp(t) terms are called
Modal Coefficients. The terms are ordered such that q;(t) has the lowest
frequency, gy(t) has the next lowest frequency, etc. Although this series
contains an infinite number of terms, the Modal Coefficients qu(t) gets smaller
as k gets larger. As a result, the motion can often be accurately approximated
by only a few modes.

The first three flexible modes for a beam pinned at each end are determined to
be:

PG = sin(mx/L)

pa(x) = sin(2ax/L)

P3(x) = sin(3nx/L)
where x is the distance from the left end of the beam and L is the total length of
the beam. Below are sketches of the first three mode shapes:
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Figure A2
Second Mode Shape

P5(x)

Figure A3
Third Mode Shape

Palx)

Once the time-histories of ¢;(t), (1), and g4(t) are known, the deflection of the
beam at time t at a distance x along the beam can be approximated by truncating
the infinite series after three terms:

YO8 = prGIFq (0 + P20 aa(t) + P30 as(D)

Unfortunately, there is no way to tell how many modes must be kept for
accurate analysis. The only sure way is to perform the analysis with a certain
number of modes and then perform the analysis again with additional mode(s).
If the results of the two analyses agree, the results are probably accurate.

Page 9



