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SUMMARY  

The safety and reliability of a cable-stayed bridge can be 
adversely affected by excessive vibration of its long, 
slender, and flexible cables.  The purpose of this paper is 
to design a 13m cable experiment model to represent the 
behavior of a cable on a cable-stayed bridge.  This paper 
determines the proper configuration of the cable based 
on a static computational analysis.  The configuration of 
the cable is first described by a catenary curve.  The 
computations are then simplified, and the assumption of 

a parabolic curve is proven accurate under the condition 
of small sag. The configuration of the cable model is 
determined based on the parabolic formulation.  The 
design and assembly of a 13m cable experiment is 
completed based on these results.  The as-built cable 
model is tested to verify that the behavior of the actual 
system corresponds to the analytical model.  The results 
obtained show that the ideas presented in this paper can 
be used to effectively design cable systems.  

 

INTRODUCTION  

Cable stayed bridges have an inherent beauty that blends 
with their natural surroundings. Two examples are shown in 
Figure 1. The total design of these bridges is aesthetically 
pleasing and economical. The structure is economical 
because the towers and cables are relatively short and 
lightweight, making them easy to construct. As a result, 
there is no need to develop more complex erection 
techniques. The slender cables and small towers of a cable-
stayed bridge also enhance the attractiveness of the bridge.  
The general appearance of slimness is the essence of this 
aesthetically pleasing structure.  The overall structural form 
of the cable-stayed bridge possesses the unique ability to 
blend harmoniously with nature (Troitsky, 1988). 
 

 
 
 
 

The first modern-day version of a cable-stayed bridge, 
constructed in Germany in the year 1950, was not very 
successful. Preliminary designs lacked substantial theory. In 
addition, a lack of technical knowledge regarding the 
behavior of this statically indeterminate system resulted in 
inaccurate design and structural fatigue (Podolny, 1976). 
The behavior of a cable-stayed bridge should be analyzed by 
a complex static analysis, which was not completely 
understood when the bridge was first designed.  Also, 
construction capabilities were limited by the adequacy of the 
materials available during this time. The strength of 
materials used for the initial construction of these bridges, 
such as timber, round bars, and chains, limited the structures 
load carrying capacity. None of these materials were 
sufficient to support the tension forces acting in the stays. As 
a result of these problems, this particular bridge design was 
not utilized in the United States until 1972 (Troitsky, 1988). 
 
Modern methods of analysis, improved construction 
methods, and more reliable construction materials provided 
the ability to develop the present-day cable-stayed bridge. 
The development of computers enabled the creation of 
programs that could accurately analyze the statically 
indeterminate system. Other scientific advancements 
provided materials, such as high-strength steels, that were 
implemented in the construction of the bridge decks. 
Stronger materials significantly reduced fatigue and lessened 

Figure 1. Cable stayed bridges. 
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the deformations resulting from asymmetrical loading. The 
development of computer programs and stronger materials 
are the underlying elements of technical progress that have 
lead to the widespread application of these beautiful 
structures (Podolny, 1976). 
 
The slender stays of a modern cable-stayed bridge are 
beautiful, however their slimness is a point of concern. The 
slender cable stays are both lightweight and flexible. As a 
result, they are lightly damped and very prone to vibration. 
The vibration occurs when environmental excitations cause 
the cables to sway and gallop.  Cable vibration can result in 
induced loads on the cables and cable fatigue. These factors 
are critical in order to ensure that the structure will support 
the intended tensile loads (Krenk). They are also important 
when considering the overall appearance of the bridge, 
defined in terms of attractiveness and perceived stability. A 
reduction in cable vibration raises public confidence, and 
increases the popularity of the bridge.  Further analysis of 
cable fatigue, slack conditions and deck deformations is 
necessary to improve the strength and durability of the 
structure while maintaining its natural beauty. 
 
This report describes the development and configuration of a 
13m cable experiment used to examine smart damping cable 
vibration mitigation techniques. A 3m cable vibration study 
was performed during the fall of 1999 in the Structural 
Dynamics and Control / Earthquake Engineering Laboratory 

(SDC/EEL) at the University of Notre Dame. This 
experiment was important to develop an understanding of 
cable vibration and mitigation strategies.  The purpose of the 
experiment was to analyze the addition of supplemental 
damping on a taut cable using a semi-active “smart” 
magnetorheological (MR) damper (Spencer et al, 1997). 
Initial testing of the 3m cable model provided positive 
results.  However, a larger-scale cable experiment was 
necessary to model the behavior of the system more 
accurately.  This paper describes the development of a 13m 
cable model that can be used to analyze cable damping 
strategies further.   
 
The purpose of this paper is to design a 13m cable 
experimental model to represent the behavior of a cable on a 
cable-stayed bridge.  This paper determines the proper 
configuration of the cable based on a static computational 
analysis.  The configuration of the cable is first described by 
a catenary curve.  The computations are then simplified, and 
the assumption of a parabolic curve is proven accurate under 
the condition of small sag. The configuration of the cable 
model is determined based on the parabolic formulation.  
The design and assembly of a 13m cable experiment is 
completed based on these results.  The as-built cable model 
is tested to verify that the behavior of the actual system 
corresponds to the analytical model.  The results obtained 
show that the ideas presented in this paper can be used to 
effectively design cable systems. 

 

METHODS AND MATERIALS  

The specific characteristics of the modeled structure are 
described in terms of frequency, weight per unit length, sag, 
angle of inclination, and tension. The configuration of the 
cable on a cable-stayed bridge is first analyzed by the 
equations of a catenary curve. This analysis describes the 
behavior of the cable under the distributed load of its own 
weight. The system is then resolved into four relationships 
that compare the arc length of the cable with the sag, 
tension, and distance to the points of support. A parabolic 
analysis of this cable system is proven to be an accurate 
approximation of the cable behavior, under the specified 
conditions of cable sag and arc length. The specific type of 
cable is selected based on material properties and yield 
specifications.  Then, the configuration and orientation of 
the cable is determined. Finally, the 13m cable model is 
designed and built according to these results.  The analytical 
solution is verified by comparing the numerical results to the 
parameters of the built model. 
 
Catenary Analysis of Cable Behavior 
 
The catenary analysis provides the most accurate 
representation of the cables’ structural behavior and 
configuration on a cable-stayed bridge. The cables are 

flexible supports that cannot be analyzed according to the 
underlying principles of more rigid bodies. The system is 
structurally indeterminate of a high order. This problem is 
the result of the changes in the cable sag and axial tension 
(Podolny, 1976). In a cable stayed bridge, the distributed 
weight of the inclined cable takes the shape of a catenary 
curve. This occurs because the cable is held between two 
supports with no intermediate anchorage (Podolny, 1976). 
Therefore, in order to describe the true configuration of a 
cable, the weight of the cable must be considered in a more 
complex evaluation of cable behavior. The most accurate 
approach to analyzing this problem is to describe the shape 
of the cable in terms of its slope, sag, and arc length using 
the equation of a catenary curve. 
 
Figure 2 shows a cable that is loaded by its distributed 
weight. The catenary equations are used to analyze the curve 
created by a load distributed uniformly along its own length. 
A free-body diagram is drawn in order to calculate the forces 
along the inclined cable. The cable is cut at its lowest point 
and the origin of the x and y-axis is placed at this point. The 
tension at this point, To, is in the horizontal direction only. 
Figure 2 shows a load distributed along the cable’s length. 
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The force acting on the length segment ds is wds, where w is 
the weight per unit length of the cable. 
 
The sum of the forces in the x and y directions yield the 
equilibrium equations: 
 

( ) wsT =èsin  (1) 

( ) oTT =ècos  (2) 

 
Division of Eq.(1) by Eq.(2) yields the tangent: 
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The constant, 
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q = , is introduced and Eq.(3) is 
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The differential length of the cable is described as: 
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Let , 
dx
dy

=ζ , be the slope of the curve. Then, this 

relationship is combined with Eq.(6) to get the differential 
equation for the slope: 
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By rearrange the equation, the following relationship is 
determined: 
 

qdx
d

=
ζ+

ζ
21

 (8) 

 
The origin of the coordinate system is placed at the lowest 
point of the cable. The slope is zero at this point. Both sides 
of the equation are integrated: 
 

 
 

 
 
 

∫∫ =
ζ+

ζζ x

qdx
d

00
21

 (9) 

( ) ( )qxee
dx
dy qxqx sinh

2
1

=−==ζ  (10) 

 
The equation for the curve the cable makes may be found by 
integrating the slope equation: 
 

( )[ ]1cosh
1

−= qx
q

y  (11) 

 
This equation that describes the catenary now involves 

( )qxcosh . The tension in the cable may be found by 
combining Eq.(2), Eq.(6), and Eq.(10) and employing the 
identity for the hyperbolic functions, 
 

( )( ) ( )( ) 1sinhcosh 22 =− qxqx  (12) 

 
yielding:  
 

( )[ ] ( )qxTqxTT oo coshsinh1 2 =+=  (13) 

 
This equation describes the length of the cable from its 
lowest point to any position x: 
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Eqs. (11) – (14) describe the cable as a catenary curve. 
 

Figure 2. Catenary cable analysis. 
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Model Assumptions: Catenary verses Parabolic 
Analysis 
 
The actual shape of a cable in a cable-stayed bridge is a 
catenary curve. However, the behavior of cable systems can 
be approximated by a simplified equation for the shape of 
the cable. The equation of a parabolic curve does not 
describe the cable configuration of a cable- stayed bridge 
exactly. However, for small sag, the approximation of a 
parabolic curve provides very accurate results. When 
defined according to specified model assumptions, a 
parabolic curve analysis is an acceptable approximation of 
the cable behavior. Three specific conditions must be met in 
order for the approximation to maintain minimal error. The 
sag ratio, n = f / l , must be less than or equal to 0.15, the 
horizontal component of the length must be large, and the 
angle of inclination of the cable chord to the horizontal 
cannot exceed 70° (1.22 radians) (Podolny, 1976). 
 
This criterion was determined by comparing the cable 
lengths of a catenary and a parabola curve assuming a 
typical cable design with a span of about 90.0-100.0 m and a 
support height of about 40 m for different horizontal 
tensions. The difference in lengths between a catenary and a 
parabolic curve is controlled by Eq.(15) and Eq.(16). Figure 
3 is the free-body diagram of the cable represented and 
analyzed by the same two equations. L is the arc length of 
the cable, l is the length of the cable along the x-axis, b is the 
support height along the y-axis, T0 is the horizontal tension, 
and w is the weight per unit length (Podolny, 1976). 
 
The length of the parabolic curve is determined by,  
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The length of the catenary curve, determined by evaluating 
Eq. (13) along x : L is, 
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Table 1 describes the resulting comparison between the 
parabolic and catenary curves. LC is the arc length of the 
catenary curve and Lp is the arc length of the parabolic 
curve. According to Table 1, the error remains less than 
0.5% at the worst condition specified. Therefore, the 
parabolic curve appears, within reasonable error, to be 
adequate to model a cable with small sag. The parabolic 
analysis is described in the next section and the error 
between the static profile of catenary and parabolic curves 
for the proposed cable is examined later in this paper. 
 

 
Table 1. Percent Error: Catenary vs. Parabola. (Podolny, 1976) 
 

T0 Lc Lp ∆∆L = Lc - Lp ∆∆L / Lc 
(kN) (m) (m) (m) (%) 

222.40 109.77 109.30 0.47 0.42 
444.80 101.65 101.62 0.03 0.03 
667.30 100.21 100.20 0.01 0.01 
889.70 99.70 99.70 0.10 x 10-3 0.01 

222.40 99.18 99.16 0.02 0.01 
 

 
 
Parabolic Analysis of Cable Behavior 
 
Rather than considering the weight distribution along the 
cable’s length, the parabolic curve assumes the weight to be 
distributed as a uniform load per unit length along a 
horizontal projection of the cable (Podolny, 1976). Figure 4 
describes the simplified analysis of cable behavior. 
According to the assumption of a parabolic curve, the weight 
is distributed uniformly along a horizontal line. The tension 
in the cable is always tangent to the curve at any point along 
its length. In order to analyze the forces acting on the cable, 
a free-body diagram is drawn with the cable cut at its lowest 
point. The origin of the coordinate system is designated at 
the low point of the cable, and the equilibrium equations are 
defined from this point. The tension at the lowest point of 
the inclined cable is defined as T0. The tension is only 
horizontal at this point because the tangent to the curve is 
equal to zero. The weight per unit length of the cable, w , 
and the tension, T , is defined at any point, x , along the 
curve. 
 

Figure 3. Catenary vs. Parabolic arc length. 
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The equilibrium equations can be found according to the 
free-body diagram in Figure 4: 
 

∑ = 0xF  (18) 
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Divide Eq. (21) by Eq. (19) to form the tangent and the 
following relationship: 
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The tangent of a point on the curve is equal to the slope at 
that point: 
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Separate variables and integrate: 
 

qxdxdy =  (25) 

∫∫ = qxdxdy  (26) 

 
The following equation describes the curve of the cable as a 
parabola: 
 

2

2
1

qxy =  (27) 

 
The expression for T0 describes the horizontal tension at the 
lowest point of the cable: 
 

q
w

To =  (28) 

 
The tension in the cable at any point can be found in terms 
of by the use of Eq. (28) and Eq. (27): 
 

( )22
max 1 xqTT o +=  (29) 

 
 
 

 

RESULTS  

The following results describe a cable system that is similar 
to the experimental system designed at the Hong Kong 
Polytechnic University by Yong Chen and Gang Zheng. The 
orientation and cable characteristics are specified in their 
report, “Vibration Testing of Stay Cable Connected with 
Wire-Cable Damper,” February 2000. The cable system 
presented by Yong Chen and Gang Zheng is consistent with 
the cable system formulated in the conclusion of this report 
(Chen et al, 2000). 
 
The analytical results presented describe the process of cable 
design based on the requirements of low sag, large 
horizontal length, and a small angle of inclination.  The 
parabolic assumptions are re-examined and verified, then the 

selection of the cable is made based on the required cable 
weight and strength.  Finally, the analytical results are 
compared with the parameters that define the actual built 
model.  The model assumptions and methodology are proven 
to be accurate.  

Analytical Results 
 
The parabolic formulation and analysis of cable behavior is 
used to describe a specific experimental cable system. The 
purpose is to determine the necessary orientation of the 
cable, and the specific characteristics of the cable properties 
based on the established parameters. All calculations are 
performed under the model assumptions of a parabolic 

Figure 4. Parabolic Cable Analysis. 
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inclined cable. The parabolic assumption was described 
previously in the Model Assumption section of this report. 
According to this assumption, three specific conditions must 
be met in order for the approximation to maintain minimal 
error. The formulation of this particular cable system 
maintains that the following criteria are met: the sag ratio is 
less than 1%, the horizontal length is greater than 120 m, and 
the angle of inclination is less than 45°. After the 
calculations are made, the resulting shape of the parabolic 
curve is compared to the shape of the catenary curve to 
illustrate that the resulting error is negligible. 
 

Selection of Cable Configuration 
 
Figure 5 illustrates the orientation of the cable with respect 
to the equation variables. The equations used to solve for the 
specific cable orientation are described by Eq. (30) - Eq. 
(39). 
 
For these calculations, the nominal arc length, L0 , of the 
cable is set equal to 12.0 m, and θ = 18°. 
 
The variables q and yL are defined according to the original 
derivation by Eq. (30) and Eq. (31). 
 

( )
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q
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The arc length of the entire cable, evaluated at xR and xL, is 
shown by Eq.(32) and Eq.(33). Then, according to Eq.(34), 
the arc length at xL  is subtracted from the arc length at xR to 
define the section of the cable under consideration. 
 

( ) ( ) 




 





 ++++= 1ln1

2
1 22 qxqxqxqx
q

S RRRRR
 

(32) 

( ) ( ) 




 





 ++++= 1ln1

2
1 22 qxqxqxqx
q

S LLLLL
 

(33) 

 
Therefore, for this orientation, the arc length, Larc , is defined 
by SR - SL. 
 

LRarc SSL −=  (34) 

 
The next four equations, Eq.(35) - Eq.(38) , are used to 
calculate the sag, ∂ , at the midspan. The location of the 
midspan is found along the horizontal axis and defined  
 

 
 
 

 
 
 
 

by xm. Figure 6 describes the relationship between mŷ  and 

ym. The sag, ∂ , is calculated by subtracting, mŷ - my . 
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Figure 5. Cable Orientation. 

Figure 6. Sag Calculation. 
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The sag ratio, S , is defined by the sag, ∂ , divided by the 
horizontal span of the cable, as shown by Eq.(39). 
 

( )LR xx
S

−
∂

=  (39) 

 
The equations above are solved with respect to the changing 

length of Lx . An array is defined for Lx  beginning at a 
length of 135 m and spanning a distance of 5 m to a 
maximum length of 140 m. The variables required to define 

the orientation of the cable are S, Rx , Ly , Ry , L, and q. 

Each variable is graphed with respect to the array, Lx , for a 
particular S. The results are shown below in Figures 7 - 12. 
 
Using the relationships illustrated in the graphs, Figures 7-
12, the value of each variable is determined with respect to a 
specified sag ratio. In order to create the desired cable 
system, a sag ratio of 0.321% was used to evaluate each 
variable. Table 2 displays the calculated parameters at 
0.321% sag. 
 
First, Eq. (40) is used to evaluate Tmax with respect to w. 
 

22
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The frequency, f, is then evaluated in three modes according 
to Eq. (41) and (42): 
 
The natural frequency for the first symmetric mode (for 
small sag) is approximately, 
 

q
g

L
fsymm

ð
=  (41) 

 
The natural frequency for the first anti-symmetric mode is, 
 

q

g

L
fanti

2ð
=  (42) 

 
 
 
Table 2. Calculated Values for a Sag Ratio of 0.321%. 
 

xL 138.6987 m yL 21.6426 m L 13.0003 m 

xR 150.1114 m yR 25.3508 m q 0.0023 m-1 

 
 

Re-examination of Parabolic Assumption 
 

The values listed in Table 2, Lx , Rx , Ly , Ry , q, and L, are 
used to re-evaluate the accuracy of the parabolic assumption. 
These values, which were solved calculated by the parabolic 
equations, are re-evaluated by the catenary equations. The 
characteristics of the cable are also described in terms of the 
desired arc length, Larclength = 12.05 m.   Eq.(43) and Eq.(44) 
are combined with the general derivation of a catenary curve 
to determine three relationships. These relationships are 
presented by Eq.(45), Eq.(46), and Eq.(47). They completely 
describe the shape of the cable in terms of the angle of 
inclination, θ = 18° , and the arc length of the cable, Larclength 
= 12.05 m.  
 

( )ècosoLR Lxx +=  (43) 

( )èsinoLR Lyy +=  (44) 

( )
q
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1cosh −
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q
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qx LR

−
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−
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The graph presented in Figure 13 compares the results of the 
cable analysis for the parabolic and catenary equations. This 
graph plots the solutions of both the catenary and parabolic 

derivations across the horizontal span of the cable, Lx to 

Rx . As shown in Figure 13, the two curves are so similar 
that they are indistinguishable. Although the true 
characteristics of a cable in a cable-stayed bridge are 
described by a catenary curve, the graph shows that the error 
resulting from the parabolic approximation is minimal. 

Selection of Cable 
 
The purpose of this analysis is to determine the proper 
configuration of a scaled cable that models the structural 
behavior of a cable on a cable-stayed bridge. The model 
consists of an aircraft cable of approximately 13 m in length. 
Figure 14 describes the orientation of the cable. It also 
describes the relationship between the angle of inclination, 
the arc length, the distance along the x-axis to the base of the 
support, and the distance along the y-axis to the top of the 
tower. Specific characteristics of several cables are found in 
Table 3. For this particular system, the 7 x 19 stainless steel 
cable, 4.0 mm (5/32 in) diameter, will be used. The  
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Figure 7. x L vs. Sag Ratio. 

Figure 8. x L vs. q . 

Figure 10. x L vs. y R . 

Figure 11. x L vs. x R . 

Figure 9. x L vs. y L . 

Figure 12. x L vs. Arc Length. 
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approximate weight per unit length, w, is 0.6573 N/M  
(6.70kg/100m). The breaking strength listed for each wire 
rope applies to new, unused rope under the stress of a 
straight-line pull. The minimum load required to break the 
cable is 11 kN (2400 lbs). The rope’s maximum safe 
working load, Tmax, is considered to be 20% of the minimum 
breaking strength, Lmin. (Wire Rope Industries) Therefore, 
according to Eq. (45), the maximum tension used in this 
analysis 1800 N. 
 

( )minmax 02.0 LT ≥  (48) 

 
The weight per unit length of the cable is approximated at 
Tmax = 1800 N. An array is defined for w ranging from 0-15 
N/m. The graph in Figure 15 describes the relationship 
between Tmax and w. From this graph, it is determined that 
for Tmax = 1.7961 x 103 N, w = 3.8287 N/m. 
 
For the values of q and L listed in Table 2, and g = 9.81 
m/s2, the frequency is calculated in each of the three modes: 
 
The natural frequency for the first symmetric mode, Eq.(41), 
is  fsymm = 2.7512 Hz. 
The natural frequency for the first anti-symmetric mode, 
Eq.(42), is fanti = 5.5023 Hz. 
 
The horizontal span is determined by Eq.(49) 
 

4127.11=− LR xx m (49) 

 
The vertical height is determined by Eq.(50) 
 

7082.3=− LR yy m (50) 

 
A specific amount of mass must be added to the cable in 
order for the total weight of the cable to equal the desired 
weight per unit length, w. Eq. (51) is used to determine the 
amount of weight that must be added to the cable. 
 

addedcable www +=  (51) 

 
The weight of the 1/8 in galvanized cable is determined by 
Table 3, wcable = 0.6573 N/m. According to Eq.(51), wadded = 
3.17143 N/m. The spacing between each of the weights will 
be 10 cm along the entire length of the cable. Therefore, the 
equivalent distributed weight is 0.317143 N/.1m. 
 
This results in a cable with 0.321% sag. 

 
 
 

 
 
 

 
 

Figure 13. Parabolic vs. Catenary Curve. 

Figure 14. Cable Configuration. 

Figure 15. T max vs. w . 
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Analytical Verses Experimental Results 
 
The analytical results are used to establish target values that 
define the ideal orientation and configuration of the 13 m 
cable model.  These values had to be modified slightly as a 
result of limitations imposed by the laboratory dimensions.  
Table 4 provides a comparison between the analytical results 

using the target parameters of the system and the 
experimental results using the actual size and shape of the 
built cable model.  These results verify the consistency of 
the analytical and experimental results and validate the 
accuracy of the numerical solution. 
 

 
 

 
Table 3. Aircract Cable (7X7 Commerciala Quality) (7X19 Stainless Steel Type 302/304). (Wire Rope Industries) 
 

Diameter Diameter Rope 
Construction 

Weight Weight Minimum 
Breaking Load 

Minimum 
Breaking Load 

(mm) (in.)  (kg/100m) (lb/100ft) (kN) (lbs.) 

1.6 1/16 7 x 7 1.21 0.75 2.0 480 
2.4 3/32 7 x 7 2.38 1.60 4.0 920 
3.2 1/8 7 x 19 4.32 2.90 8.0 1760 
4.0 5/32 7 x 19 6.70 4.50 11.0 2400 
4.8 3/16 7 x 19 9.67 6.50 16.0 3700 
6.4 1/4 7 x 19 16.37 11.00 28.0 6400 
7.9 5/16 7 x 19 25.74 17.30 40.0 9000 
9.5 3/8 7 x 19 36.16 24.30 53.0 12000 

 
 

 
 

 
Table 4.  Analytical Results verses Experimental Results using Target Parameters 
 

 Target Parameters – Analytical Results Model Parameters – Experimental Results 

L 13.00 m 12.56 m 

θ 18.00° 22.53° 

w 3.83 N/m 3.99 N/m 

T0 1665 N 2172 N 

q 0.0023 m-1 .0018 m-1 

f 2.75 Hz 2.89 Hz 

 
 

 
 

DISCUSSION  

The purpose of this paper was to develop an analytical 
model that accurately described the behavior of a cable on a 
cable-stayed bridge and could be used to design and 
assemble a 13m cable experiment.  This paper determined 
the proper configuration of the cable based on a static 
computational analysis.  The configuration of the cable was 
first described by a catenary curve.  The computations were 
then simplified, and the assumption of a parabolic curve was 

proven accurate under the condition of low sag. The size and 
shape of the cable model was determined based on the 
parabolic formulation.  The design and assembly of a 13m 
cable experiment was completed based on these results.  The 
13m cable model was tested to verify that the behavior of the 
actual system corresponds to the analytical model.  The 
results obtained show that the ideas presented in this paper 
can be used to effectively design cable systems. 
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